Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Front Immunol ; 12: 746203, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1477828

RESUMEN

The reasons behind the clinical variability of SARS-CoV-2 infection, ranging from asymptomatic infection to lethal disease, are still unclear. We performed genome-wide transcriptional whole-blood RNA sequencing, bioinformatics analysis and PCR validation to test the hypothesis that immune response-related gene signatures reflecting baseline may differ between healthy individuals, with an equally robust antibody response, who experienced an entirely asymptomatic (n=17) versus clinical SARS-CoV-2 infection (n=15) in the past months (mean of 14 weeks). Among 12.789 protein-coding genes analysed, we identified six and nine genes with significantly decreased or increased expression, respectively, in those with prior asymptomatic infection relatively to those with clinical infection. All six genes with decreased expression (IFIT3, IFI44L, RSAD2, FOLR3, PI3, ALOX15), are involved in innate immune response while the first two are interferon-induced proteins. Among genes with increased expression six are involved in immune response (GZMH, CLEC1B, CLEC12A), viral mRNA translation (GCAT), energy metabolism (CACNA2D2) and oxidative stress response (ENC1). Notably, 8/15 differentially expressed genes are regulated by interferons. Our results suggest that subtle differences at baseline expression of innate immunity-related genes may be associated with an asymptomatic disease course in SARS-CoV-2 infection. Whether a certain gene signature predicts, or not, those who will develop a more efficient immune response upon exposure to SARS-CoV-2, with implications for prioritization for vaccination, warrant further study.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones Asintomáticas , Inmunidad Innata/genética , SARS-CoV-2/inmunología , Transcriptoma/genética , Adulto , COVID-19/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata/inmunología , Masculino , ARN Mensajero/genética , Análisis de Secuencia de ARN , Índice de Severidad de la Enfermedad
2.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1409704

RESUMEN

Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in pulmonary injury, inflammation, and fibrosis. Here, increased ENPP2 mRNA levels were detected in immune cells from nasopharyngeal swab samples of COVID-19 patients, and increased ATX serum levels were found in severe COVID-19 patients. ATX serum levels correlated with the corresponding increased serum levels of IL-6 and endothelial damage biomarkers, suggesting an interplay of the ATX/LPA axis with hyperinflammation and the associated vascular dysfunction in COVID-19. Accordingly, dexamethasone (Dex) treatment of mechanically ventilated patients reduced ATX levels, as shown in two independent cohorts, indicating that the therapeutic benefits of Dex include the suppression of ATX. Moreover, large scale analysis of multiple single cell RNA sequencing datasets revealed the expression landscape of ENPP2 in COVID-19 and further suggested a role for ATX in the homeostasis of dendritic cells, which exhibit both numerical and functional deficits in COVID-19. Therefore, ATX has likely a multifunctional role in COVID-19 pathogenesis, suggesting that its pharmacological targeting might represent an additional therapeutic option, both during and after hospitalization.


Asunto(s)
COVID-19/diagnóstico , Células Dendríticas/inmunología , Inhibidores de Fosfodiesterasa/uso terapéutico , Hidrolasas Diéster Fosfóricas/sangre , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19/sangre , COVID-19/inmunología , COVID-19/terapia , Estudios de Cohortes , Conjuntos de Datos como Asunto , Células Dendríticas/efectos de los fármacos , Dexametasona/farmacología , Dexametasona/uso terapéutico , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Femenino , Humanos , Interleucina-6/sangre , Interleucina-6/metabolismo , Masculino , Persona de Mediana Edad , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , RNA-Seq , Respiración Artificial , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Análisis de la Célula Individual
3.
mSphere ; : e0018021, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1288358

RESUMEN

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly during the first months of 2020 and continues to expand in multiple areas across the globe. Molecular epidemiology has provided an added value to traditional public health tools by identifying SARS-CoV-2 clusters or providing evidence that clusters based on virus sequences and contact tracing are highly concordant. Our aim was to infer the levels of virus importation and to estimate the impact of public health measures related to travel restrictions to local transmission in Greece. Our phylogenetic and phylogeographic analyses included 389 full-genome SARS-CoV-2 sequences collected during the first 7 months of the pandemic in Greece and a random collection in five replicates of 3,000 sequences sampled globally, as well as the best hits to our data set identified by BLAST. Phylogenetic trees were reconstructed by the maximum likelihood method, and the putative source of SARS-CoV-2 infections was inferred by phylogeographic analysis. Phylogenetic analyses revealed the presence of 89 genetically distinct viruses identified as independent introductions into Greece. The proportion of imported strains was 41%, 11.5%, and 8.8% during the three periods of sampling, namely, March (no travel restrictions), April to June (strict travel restrictions), and July to September (lifting of travel restrictions based on thorough risk assessment), respectively. The results of phylogeographic analysis were confirmed by a Bayesian approach. Our findings reveal low levels of onward transmission from imported cases during summer and underscore the importance of targeted public health measures that can increase the safety of international travel during a pandemic. IMPORTANCE Our study based on current state-of-the-art molecular epidemiology methods suggests that virus screening and public health measures after the lifting of travel restrictions prevented SARS-CoV-2 onward transmission from imported cases during summer 2020 in Greece. These findings provide important data on the efficacy of targeted public health measures and have important implications regarding the safety of international travel during a pandemic. Our results can provide a roadmap about prevention policy in the future regarding the reopening of borders in the presence of differences in vaccination coverage, the circulation of the virus, and the presence of newly emergent variants across the globe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA